Phosphatidic acid domains in membranes: effect of divalent counterions.

نویسندگان

  • Jordi Faraudo
  • Alex Travesset
چکیده

Phosphatidic acid (PA) is emerging as a key phospholipid in a wide range of biological processes such as signal transduction, secretion, or membrane fusion. In most cases, the biological functionality of PA is associated with the presence of micromolar to millimolar calcium concentrations. It has been argued that PA can create defects in the packing of lipids in membranes due to lateral phase separation by divalent ions, which in turn aggregate proteins with high affinity for PA. In this article, we present a detailed investigation of the properties of PA domains in the presence of divalent ions by a combination of molecular dynamics simulations and theoretical methods. Our results show that PA is extremely effective in binding divalent ions through its oxygen atoms, with a broad distribution of binding constants and exhibiting the phenomenon of charge inversion (a total number of bound counterion charges that exceeds the negative PA charge). We predict that a PA-rich domain undergoes a drastic reorganization when divalent cations reach micromolar concentrations (i.e., typical physiological conditions), as PA lipids become doubly charged by releasing their protons. We also present a detailed investigation of the properties of interfacial water, which determine the binding of proteins or other molecules. We conclude with a discussion of the implications of our results in the context of recent experimental studies in model systems and in real cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualization of Ca2+-induced phospholipid domains.

Large vesicles (5-15 microns) were formed by hydrating a dried lipid film containing phospholipids labeled with a fluorophore in one fatty acid chain. By using a fluorescence microscope attached to a low-light-intensity charge-coupled-device camera and digital-image processor, the vesicles were easily viewed and initially showed uniform fluorescence intensity across the surface. The fluorescenc...

متن کامل

Electrostatic Interactions of Peptides with Lipid Membranes: Competitive Binding between Cationic Peptides and Divalent Counterions

In this thesis, we investigate a variety of problems involving the interaction of cationic peptides with lipid membranes. To this end we adopt Poisson-Boltzmann (PB) theory and coarse-grained models of these molecules. We first examine the electrostatic interaction of a positively-charged peptide with a negatively charged membrane immersed in a salty solution. In particular, we study how this i...

متن کامل

Grand-canonical simulation of DNA condensation with two salts, effect of divalent counterion size.

The problem of DNA- DNA interaction mediated by divalent counterions is studied using a generalized grand-canonical Monte-Carlo simulation for a system of two salts. The effect of the divalent counterion size on the condensation behavior of the DNA bundle is investigated. Experimentally, it is known that multivalent counterions have strong effect on the DNA condensation phenomenon. While tri- a...

متن کامل

Strongly correlated electrostatics of viral genome packaging.

The problem of viral packaging (condensation) and ejection from viral capsid in the presence of multivalent counterions is considered. Experiments show divalent counterions strongly influence the amount of DNA ejected from bacteriophage. In this paper, the strong electrostatic interactions between DNA molecules in the presence of multivalent counterions is investigated. It is shown that experim...

متن کامل

Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes.

Purified Acetylcholine Receptor (AcChR) from Torpedo has been reconstituted at low (approximately 1:3500) and high (approximately 1:560) protein to phospholipid molar ratios into vesicles containing egg phosphatidylcholine, cholesterol, and different dimyristoyl phospholipids (dimyristoyl phosphatidylcholine, phosphatidylserine, phosphatidylglycerol and phosphatidic acid) as probes to explore t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 92 8  شماره 

صفحات  -

تاریخ انتشار 2007